
Guidelines for Build Planning, V1.0 page 1 September 19, 2009

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.

NOTE: Words or phrases shown in blue underlined contain links to additional information.
Guidance & tailoring information is shown in italics with gray background.

Build/Release Planning Guidelines

Number: 580-GL-076-01 Approved By: (signature)
Effective Date: October 1, 2009 Name: John Donohue
Expiration Date: October 1, 2014 Title: Chief, SED

Responsible Office: 580/Software Engineering Division (SED) Asset Type: Guideline
Title: Build/Release Planning Guidelines PAL Number: 1.2.5.1

Purpose The purpose of this document is to provide uniform guidance for planning
software builds and releases.

Scope This guideline should be used by all software projects and should align with
the Software Project Planning process.

Guideline The following are in no particular order and are numbered for reference
purposes only:

1. Understand the Differences Between Builds and Releases

A software build is a portion of a system that satisfies an identifiable
subset of the total software requirements. As the software is developed,
each successive software build includes the functionality allocated to that
build, in addition to the functionality included in preceding builds.

A Release is a Build that is delivered to the Customer for formal testing.

Apply the build guidelines to both builds and releases.

2. Apply an Incremental Software Development Approach

Develop the software incrementally, in software builds and releases, so
that requirements misunderstandings, design flaws, implementation
errors, and productivity problems can be detected and resolved early in
the software development life cycle.

The software build approach is an incremental approach to
implementing, integrating, and testing software systems. It reduces
potential problems in software development to manageable levels that
can be effectively addressed with clear corrective actions. Each
successive software build adds increased functionality to a proven
baseline, thereby reducing schedule risk and increasing schedule
credibility. The key to the software build approach is in planning how to
partition and sequence the incremental development of the software that
comprises each software build.

3. Develop a Build/Release Plan

Define the build contents and the implementation schedule for each build
in a build plan within your Software Management Plan/Product Plan
(SMP/PP).

The build/release contents are typically driven by defining the new or
upgraded functionality that will be included in the build/release (see item

Guidelines for Build Planning, V1.0 page 2 September 19, 2009

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.

NOTE: Words or phrases shown in blue underlined contain links to additional information.
Guidance & tailoring information is shown in italics with gray background.

4 below). For systems being maintained, build/release contents are
typically driven by the set of changes implemented in response to
change requests and/or noncompliance’s that will be included in the
build/release (see item 6 below).

Update the Build Plan at the end of each build as well as whenever the
Software Management Plan is updated. Review the Build Plan with your
management.

4. Define the Contents of Each Build/Release

When planning the software development project’s build/release
contents, consider the following guidelines:

 Plan that each build/release provide complete and demonstrable
functions that add to the functions of predecessor builds/releases

 Keep the first build/release as simple as possible especially if the staff
is not already familiar with the application, computer, development
environment, operating system, language, standards, procedures, or
external interfaces.

 The first build should consist of a basic foundation for the system
software to provide a functionally meaningful subset of the final
software capability. It should provide a complete and definitive
support structure for the system software, providing a foundation or
framework upon which additional functionality can later be added in
subsequent builds.

 Work around long lead times for procurement or development of
acquired hardware, software, or firmware components by planning to
use substitute components as much as possible. This would include
the use of a development computer during early builds while waiting
for the target host computer, or the simulation of a hardware interface
in software until the real interface is available.

 Do not postpone to the last build capabilities crucial to the operational
use of the software. For example, do not postpone capabilities critical
to system usability, stability, or performance to the last build.

 Plan capabilities that address high-risk requirements or complex
requirements or that can have a major impact on the design for earlier
builds/releases so that problems can be resolved early.

 Delay capabilities whose requirements are incomplete to later
builds/releases to allow time to more clearly solidify the requirements.

 Plan to include capabilities critical to the usability, stability, or
performance of the software in the next-to-last build

 Plan a “clean-up” build/release as the last build/release to resolve
change requests or problem reports the customer deems necessary
before final delivery of the system.

5. Schedule the Builds/Releases

A build implementation effort, including unit design, code, test, and
integration, should span 3 to 5 months. Add at least 1 more month for
Build Testing by an independent test team. If a software build is to be

Guidelines for Build Planning, V1.0 page 3 September 19, 2009

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.

NOTE: Words or phrases shown in blue underlined contain links to additional information.
Guidance & tailoring information is shown in italics with gray background.

integrated into a system build with other developed or acquired system
elements, add more time for system integration and testing. Consult with
the team performing the integration (who should involve stakeholders
from each subsystem) to determine the complexity of the integration and
testing and determine how much time should be scheduled. Separately
schedule the Formal System Testing for each release.

Do not overlap the development efforts for multiple builds; this is an
approach that increases CM and testing complexity (and may require a
fix to be applied and tested to multiple baselines). At most, plan the
Build Testing for one build in parallel with development of the next build,
if there is an independent test team.

If schedule constraints require that implementation efforts overlap for
multiple builds, divide the software into multiple components that have a
few, well-defined interfaces. Assign each component to a separate
project group and implement the components in parallel. Define a build
plan for each component.

Synchronize the build schedules so that a build for each component is
released for qualification testing at approximately the same time. The
effectiveness of qualification testing often depends on the stability of the
software being tested.

Do not schedule a programmer to work on two builds simultaneously.
This seldom works because some programmers may decide to work
hardest on the build that contains the most interesting software instead
of giving top priority to the software in the earlier of the two builds.
However, this rule does not apply to the efforts needed to correct defects
in software released for qualification testing. A programmer who releases
defective software is still responsible for correcting the defects even if it
means interrupting the implementation efforts for the next build.

Consider any Customer needs for specific operational capabilities as you
develop the schedule.

It is recommended that the schedule for and contents of each
build/release be reviewed with and concurred by all relevant
stakeholders including the customer and line management at the Branch
Status Review for the project (and other forums for those stakeholders
not present).

6. Maintenance Build/Release Considerations

Maintenance efforts are often measured in terms of days or weeks
instead of months. However, control will be lost over maintenance if each
maintenance item is planned and managed as a separate item. Instead,
group maintenance items into maintenance releases, analogous to
builds. Establish a regular schedule for maintenance releases (e.g., one
every 4 or 6 months). Do not agree to an endless series of emergency
releases, as adequate planning will not be possible and control will soon
be lost.

Recognize that emergencies will arise. Non-conformances that are
critical to continued operations will require an emergency release.

Guidelines for Build Planning, V1.0 page 4 September 19, 2009

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.

NOTE: Words or phrases shown in blue underlined contain links to additional information.
Guidance & tailoring information is shown in italics with gray background.

When planning the software maintenance project’s build/release
contents, try to:

 Plan for resolution of the highest-priority change requests and/or non-
conformances in the upcoming build/release

 Include, as appropriate, resolution of lower-priority change requests
and/or non-conformances that can be addressed in the same areas of
the system as higher-priority changes that are being implemented.

Tools and
Templates

The following tools are available. Others may exist for the local project.

 Name Description

 None identified

Change History Version Date Description of Improvements

 1.0 9/19/09 Initial version approved by CCB

